Mostrando las entradas con la etiqueta ESPACIO. Mostrar todas las entradas
Mostrando las entradas con la etiqueta ESPACIO. Mostrar todas las entradas

Hallan el agujero negro más voraz del universo

Un equipo internacional de astrónomos ha descubierto LID-568, un agujero negro supermasivo que se alimenta de materia a un ritmo extremo, concretamente 40 veces superior al límite teórico, conocido como límite de Eddington. Los investigadores lo sitúan en el universo primitivo, a tan solo 1.500 millones de años del Big Bang.

"Este agujero negro se está dando un festín", dice la astrónoma Julia Scharwächter, del Observatorio Gemini y del Laboratorio Nacional de Investigación para la Astronomía Óptica-Infrarroja (NOIRLab) de la NSF.

"Este caso extremo demuestra que un mecanismo de alimentación rápida por encima del límite de Eddington es una de las posibles explicaciones de por qué vemos estos agujeros negros tan pesados ​​tan temprano en el universo", dice en declaraciones recogidas por la agencia Efe.

El límite de Eddington es una consecuencia natural del proceso de alimentación de los agujeros negros, indican desde el portal Science Alert. "Cuando un agujero negro acumula activamente grandes cantidades de material, este no cae directamente en el pozo gravitacional, sino que primero se arremolina como el agua en un desagüe, y solo el material del borde interior del disco cruza el horizonte hacia el agujero negro".

Los agujeros negros supermasivos son concentraciones de materia con una fuerza gravitatoria tan intensa que ni la luz puede escapar. Suelen encontrarse en el centro de las galaxias, en cuya formación y evolución desempeñan un papel clave.

El telescopio James Webb, pieza clave

El hallazgo, descrito este lunes (4.11.2024) en la revista Nature Astronomy, ha sido posible gracias a las extraordinarias capacidades de observación infrarroja del telescopio James Webb. En concreto, los investigadores usaron el espectrógrafo de campo integral del instrumento NIRSpec del James Webb, que permite obtener una visión completa de su objetivo y de la región circundante, lo que condujo al inesperado descubrimiento de potentes flujos de gas alrededor del agujero negro central.

La velocidad y el tamaño de estos flujos llevaron al equipo a inferir que una fracción sustancial del crecimiento de la masa de LID-568 podría haberse producido en un único episodio de rápida creación.

"El hallazgo hubiera sido imposible sin este instrumento del James Webb. Gracias a él podremos mejorar nuestra comprensión de los agujeros negros y abrir interesantes vías de investigación", señala Hyewon Suh, investigadora del Observatorio Gemini y del NOIRLab de la NSF.

La lejanía de LID-568 es sorprendente. Aunque el objeto es débil desde nuestra posición en el universo, señalan desde el portal Science Alert, su distancia significa que debe ser increíblemente brillante por sí mismo.

Aunque de corta duración, el «festín» de este agujero negro podría ayudar a
los astrónomos a explicar cómo los agujeros negros supermasivos crecieron
tan rápidamente en el Universo primitivo.
Imagen: S. Dagnello (NRAO/AUI/NSF)/ESO
Entender el universo primitivo

Los resultados aportan nuevos conocimientos sobre la formación de agujeros negros supermasivos a partir de "semillas" de agujeros negros más pequeños, que, según las teorías actuales, surgen de la muerte de las primeras estrellas del universo (semillas ligeras) o del colapso directo de nubes de gas (semillas pesadas).

"El descubrimiento de un agujero negro superacumulador de Eddington sugiere que una parte significativa del crecimiento de masa puede producirse durante un único episodio de alimentación rápida, independientemente de si el agujero negro se originó a partir de una semilla ligera o pesada", afirma Suh.

Desde el portal Science Alert indican que este hallazgo podría contribuir a entender el universo primitivo, pues hay evidencias que sugieren que los primeros agujeros negros supermasivos no se formaron a partir del colapso de estrellas tal y como las conocemos, sino a partir de estrellas enormes y grandes cúmulos de gas, que colapsaron directamente bajo la gravedad.

"Esto les daría una ventaja en su camino hacia convertirse en los agujeros negros gigantes que vemos en el universo hoy", indican.

El Hubble y el Chandra de la NASA descubren un dúo de agujeros negros supermasivos

Esta es una representación artística de un par de agujeros negros activos en el corazón de dos galaxias en fusión. Ambos están rodeados por un disco de acreción de gas caliente. Parte del material es expulsado a lo largo del eje de rotación de cada agujero negro. Confinados por poderosos campos magnéticos, los chorros atraviesan el espacio a casi la velocidad de la luz como devastadores rayos de energía.
NASA, ESA, Joseph Olmsted (STScI)

Como si fueran dos luchadores de sumo enfrentándose, se ha observado el par de agujeros negros supermasivos más cercanos. Se encuentran a unos 300 años luz de distancia y se detectaron utilizando el telescopio espacial Hubble de la NASA y el observatorio de rayos X Chandra . Estos agujeros negros, enterrados en las profundidades de un par de galaxias en colisión, se alimentan de gas y polvo que cae sobre ellos, lo que hace que brillen intensamente como núcleos galácticos activos (AGN).

Este par de AGN es el más cercano detectado en el universo local utilizando observaciones de múltiples longitudes de onda (luz visible y rayos X). Si bien se han encontrado varias docenas de agujeros negros "duales" anteriormente, sus separaciones son típicamente mucho mayores que las descubiertas en la galaxia rica en gas MCG-03-34-64. Los astrónomos que utilizan radiotelescopios han observado un par de agujeros negros binarios en una proximidad aún más cercana que en MCG-03-34-64, pero sin confirmación en otras longitudes de onda.

Es probable que los sistemas binarios de AGN como este fueran más comunes en el universo primitivo, cuando las fusiones de galaxias eran más frecuentes. Este descubrimiento ofrece una mirada única y cercana a un ejemplo cercano, ubicado a unos 800 millones de años luz de distancia.

Imagen en luz visible de la galaxia MCG-03-34-064 obtenida con el telescopio espacial Hubble. La nítida imagen del Hubble revela tres puntos brillantes distintos incrustados en una elipse blanca en el centro de la galaxia (ampliada en una imagen insertada en la parte superior derecha). Dos de estos puntos brillantes son la fuente de una fuerte emisión de rayos X, un signo revelador de que son agujeros negros supermasivos. Los agujeros negros brillan intensamente porque están convirtiendo la materia que cae sobre ellos en energía y resplandecen en el espacio como núcleos galácticos activos. Su separación es de unos 300 años luz. El tercer punto es una masa de gas brillante. La raya azul que apunta a la posición de las 5 en punto puede ser un chorro disparado desde uno de los agujeros negros. El par de agujeros negros es el resultado de una fusión entre dos galaxias que eventualmente colisionarán.
NASA, ESA, Anna Trindade Falcão (CfA); Procesamiento de imágenes: Joseph DePasquale (STScI)

El descubrimiento fue fortuito. Las imágenes de alta resolución del Hubble revelaron tres picos de difracción óptica anidados dentro de la galaxia anfitriona, lo que indica una gran concentración de gas oxígeno brillante dentro de un área muy pequeña. "No esperábamos ver algo así", dijo Anna Trindade Falcão del Centro de Astrofísica de Harvard y Smithsonian en Cambridge, Massachusetts, autora principal del artículo publicado hoy en The Astrophysical Journal . "Esta vista no es algo común en el universo cercano y nos dijo que algo más está sucediendo dentro de la galaxia".

Los picos de difracción son artefactos de imagen que se producen cuando la luz de una región muy pequeña en el espacio se curva alrededor del espejo dentro de los telescopios.

El equipo de Falcão examinó luego la misma galaxia en rayos X utilizando el observatorio Chandra para averiguar qué estaba sucediendo. "Cuando observamos MCG-03-34-64 en la banda de rayos X, vimos dos fuentes separadas y potentes de emisión de alta energía que coincidían con los puntos de luz ópticos brillantes vistos con el Hubble. Unimos estas piezas y concluimos que probablemente estábamos viendo dos agujeros negros supermasivos muy próximos entre sí", dijo Falcão.


En un hallazgo sorprendente, los astrónomos, utilizando el telescopio espacial Hubble de la NASA, han descubierto que el chorro de un agujero negro supermasivo en el núcleo de M87, una enorme galaxia a 54 millones de años luz de distancia, parece provocar la erupción de estrellas a lo largo de su trayectoria. Las estrellas, llamadas novas, no quedan atrapadas dentro del chorro, sino en una zona peligrosa cerca de él.
Centro de vuelo espacial Goddard de la NASA; Productor principal: Paul Morris

Para respaldar su interpretación, los investigadores utilizaron datos de radio de archivo del Karl G. Jansky Very Large Array, cerca de Socorro, Nuevo México. El energético dúo de agujeros negros también emite ondas de radio potentes. "Cuando se ve luz brillante en longitudes de onda ópticas, de rayos X y de radio, se pueden descartar muchas cosas, lo que deja la conclusión de que estos agujeros negros solo se pueden explicar como cercanos. Cuando se juntan todas las piezas, se obtiene la imagen del dúo de AGN", dijo Falcão.

La tercera fuente de luz brillante observada por el Hubble es de origen desconocido y se necesitan más datos para comprenderla. Podría tratarse de gas que recibe un choque de energía de un chorro de plasma de velocidad ultrarrápida disparado desde uno de los agujeros negros, como un chorro de agua que sale de una manguera de jardín y cae sobre un montón de arena.

"No seríamos capaces de ver todas estas complejidades sin la increíble resolución del Hubble", afirmó Falcão.

Los dos agujeros negros supermasivos estuvieron en el núcleo de sus respectivas galaxias anfitrionas. Una fusión entre las galaxias acercó a los agujeros negros y seguirán acercándose en espiral hasta que finalmente se fusionen, dentro de quizás 100 millones de años, sacudiendo el tejido del espacio y el tiempo en forma de ondas gravitacionales.
El Observatorio de Ondas Gravitacionales por Interferometría Láser (LIGO) de la Fundación Nacional de la Ciencia ha detectado ondas gravitacionales de docenas de fusiones entre agujeros negros de masa estelar. Pero las longitudes de onda más largas resultantes de una fusión de agujeros negros supermasivos están más allá de las capacidades de LIGO. El detector de ondas gravitacionales de próxima generación, llamado misión LISA (Laser Interferometer Space Antenna), constará de tres detectores en el espacio, separados por millones de millas, para capturar estas ondas gravitacionales de longitud de onda más larga del espacio profundo. La ESA (Agencia Espacial Europea) está liderando esta misión, en asociación con la NASA y otras instituciones participantes, con un lanzamiento previsto para mediados de la década de 2030.

El Hubble mide la distancia a una supernova

Esta imagen del telescopio espacial Hubble de la NASA/ESA muestra
la galaxia NGC 3810. ESA/Hubble y NASA, D. Sand, RJ Foley

Medir la distancia a objetos verdaderamente remotos como galaxias, cuásares y cúmulos de galaxias es una tarea crucial en astrofísica, en particular cuando se trata de estudiar el universo primitivo, pero es una tarea difícil de completar. Solo podemos medir las distancias a unos pocos objetos cercanos como el Sol, los planetas y algunas estrellas cercanas directamente. Más allá de eso, los astrónomos necesitan utilizar varios métodos indirectos; uno de los más importantes examina las supernovas de tipo Ia, y aquí es donde destaca el telescopio espacial Hubble de la NASA/ESA .

NGC 3810, la galaxia que aparece en esta imagen, fue la anfitriona de una supernova de tipo Ia en 2022. A principios de 2023, el Hubble se centró en esta y otras galaxias para examinar de cerca las supernovas de tipo Ia recientes. Las supernovas de tipo Ia son el resultado de la explosión de una enana blanca y su brillo máximo es muy constante. Este atributo permite a los astrónomos utilizar las supernovas de tipo Ia para medir distancias: sabemos lo brillante que debe ser una supernova de tipo Ia, por lo que podemos saber a qué distancia debe estar por lo tenue que parece. Un problema con este método es el polvo intergaláctico. Debido a que el polvo intergaláctico bloquea parte de la luz de la supernova, los astrónomos necesitan determinar cuánta luz reduce el polvo para medir con precisión el brillo de la supernova y calcular su distancia. Las capacidades únicas del Hubble les ofrecen una forma inteligente de hacerlo.

Los astrónomos utilizan el Hubble para tomar imágenes de las mismas supernovas de tipo Ia en luz ultravioleta, que el polvo bloquea casi por completo, y en luz infrarroja, que pasa a través del polvo casi sin verse afectada. Al observar cuidadosamente cuánta luz pasa en cada longitud de onda, los astrónomos pueden determinar cuánto polvo hay entre el Hubble y la supernova, lo que les permite calibrar con confianza la relación entre el brillo de una supernova y su distancia. La capacidad única del Hubble para observar en longitudes de onda de luz ultravioleta e infrarroja con gran detalle con el mismo instrumento lo convierte en la herramienta perfecta para este tipo de observaciones. De hecho, algunos de los datos utilizados para hacer esta hermosa imagen de NGC 3810 se centraron en su supernova de 2022. Puede verla como un punto de luz justo debajo del núcleo galáctico en la imagen anotada a continuación.

Esta imagen anotada del Hubble de NGC 3810 indica la ubicación de
la supernova tipo Ia SN 2022zut. ¡Fue la dieciocho mil ciento cuarenta y dos
supernovas encontrada en 2022! ESA/Hubble y NASA, D. Sand, RJ Foley
Existen muchas formas de medir las distancias cósmicas, pero las supernovas de tipo Ia son una de las herramientas más útiles y precisas debido a su gran luminosidad. Los astrónomos también deben utilizar otros métodos, ya sea como comprobación independiente frente a otras mediciones de distancia o para medir a distancias mucho más cercanas o más lejanas. Uno de esos métodos, que también funciona para las galaxias, consiste en comparar su velocidad de rotación con su luminosidad; según ese método, NGC 3810 se encuentra a unos 50 millones de años luz de la Tierra.

Una nave secreta china arroja un misterioso objeto al espacio

Captura pantalla
 La nave espacial experimental reutilizable que despegó en diciembre del año pasado desde el centro de lanzamiento de satélites de Jiuquan, en China, parece haber desplegado en órbita un objeto desconocido mientras lleva a cabo su tercera misión, informó este domingo el portal Space News.

El evento fue registrado por primera vez por el astrofísico Jonathan McDowell, y posteriormente confirmado por especialistas de la Fuerza Espacial de EE.UU., quienes clasificaron el misterioso objeto con el número 59884 (designador internacional 2023-195G).

¿Qué es el objeto lanzado por la nave?

De acuerdo con McDowell, el objeto asociado con la aeronave experimental CSSHQ, que se encuentra en una órbita con un perigeo de 602 kilómetros y un apogeo de 608 kilómetros, fue arrojado al espacio el pasado viernes.

Nave secreta China
 Asimismo, sugirió que este objeto podría ser un subsatélite o alguna pieza de un dispositivo que fue desorbitada después de ser expulsada por la CSSHQ antes del final de su misión. Una acción similar ya se efectuó durante el primer vuelo de la nave espacial. "Será interesante ver si el avión maniobra o aterriza pronto", concluyó.

Por su parte, Space News mencionó que el objeto podría utilizarse para maniobras de proximidad y captura. Indicó también que la CSSHQ liberó un objeto para realizar múltiples recapturas como parte de las pruebas en órbita en su segundo vuelo.

El primer vuelo de la nave espacial experimental tuvo lugar en 2020 y duró alrededor de dos días, mientras que el segundo, ejecutado en 2022, se prolongó durante 276 días. Ninguna autoridad china ha brindado detalles relacionados con esos vuelos.

Se piensa que la CSSHQ es un intento de China por desarrollar una nave espacial parecida a la X-37B de la Fuerza Aérea de EE.UU., un avión espacial autónomo que puede permanecer en órbita durante años.

La hermosa nebulosa y su violenta historia: un choque de estrellas resuelve un misterio estelar

La nebulosa (NGC 6164/6165) que rodea a HD 148937 vista en luz visible.- Esta imagen, obtenida con
el VLT Survey Telescope, ubicado en el Observatorio Paranal de ESO, muestra la hermosa nebulosa
NGC 6164/6165, también conocida como el Huevo de Dragón. La nebulosa es una nube de gas y
polvo que rodea un par de estrellas llamadas HD 148937.

"Al hacer una lectura de fondo, me llamó la atención lo especial que parecía este sistema", declara Abigail Frost, astrónoma de ESO en Chile y autora principal del estudio publicado hoy en Science. El sistema, HD 148937, se encuentra a unos 3.800 años luz de distancia de la Tierra en dirección a la constelación de Norma. Está formado por dos estrellas mucho más masivas que el Sol y están rodeadas por una hermosa nebulosa, una nube de gas y polvo. "Una nebulosa que rodea a dos estrellas masivas es una rareza, y realmente nos hizo sentir que en este sistema debió suceder algo impresionante. Al estudiar los datos, la sorpresa fue aún mayor".

"Tras un detallado análisis, pudimos determinar que la estrella más masiva parece mucho más joven que su compañera, lo que no tiene ningún sentido, ya que deberían haberse formado al mismo tiempo", afirma Frost. La diferencia de edad (una estrella parece ser al menos 1,5 millones de años más joven que la otra) sugiere que algo debe haber rejuvenecido a la estrella más masiva.

Visión de amplio campo de la región del cielo que hay alrededor de la nebulosa
NGC 6164/6165
Esta visión de amplio campo, creada a partir de imágenes que forman parte del
sondeo Digitized Sky Survey 2, muestra las ricas nubes estelares que hay en la
constelación de Norma (el Cuadrado del Carpintero) en nuestra galaxia, la Vía
Láctea. La hermosa nebulosa NGC 6164/6165, también conocida como el
Huevo de Dragón, aparece en el centro de la imagen.
Crédito: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin
Otra pieza del rompecabezas es la nebulosa que rodea a las estrellas, conocida como NGC 6164/6165. Tiene 7500 años de edad, es decir, es cientos de veces más joven que ambas estrellas. La nebulosa también muestra cantidades muy altas de nitrógeno, carbono y oxígeno. Esto es sorprendente, ya que, normalmente, se espera que estos elementos estén en las profundidades del interior de una estrella, no en el exterior: es como si algún evento violento los hubiera liberado.

Para desentrañar el misterio, el equipo reunió nueve años de datos de los instrumentos PIONIER y GRAVITY, ambos instalados en el Interferómetro del Very Large Telescope (VLTI) de ESO, ubicado en el desierto de Atacama, en Chile. También utilizaron datos de archivo del instrumento FEROS, instalado en el Observatorio La Silla de ESO.

"Creemos que, originalmente, este sistema tenía al menos tres estrellas; dos de ellas tenían que estar muy cerca la una de la otra en algún punto de la órbita, mientras que la tercera estrella estaba mucho más lejos", explica Hugues Sana, profesor de la Universidad Católica de Lovaina (Bélgica) e investigador principal de las observaciones. "Las dos estrellas interiores se fusionaron de una manera violenta, creando una estrella magnética y arrojando algo de material, a partir del cual se creó la nebulosa. La estrella más distante formó una nueva órbita con la estrella recién fusionada, ahora magnética, creando el sistema binario que vemos hoy en el centro de la nebulosa".

La nebulosa NGC 6164/6165 en la constelación de Norma
Este mapa muestra la ubicación de la nebulosa NGC 6164/6165, también conocida
como el Huevo de Dragón, en la constelación del hemisferio sur de Norma
(la escuadra del carpintero). Este mapa muestra la mayoría de las estrellas que
pueden verse a simple vista si hay buenas condiciones para observar el cielo.
La ubicación de la nebulosa en sí está marcada con un círculo rojo.
Crédito: ESO, IAU and Sky & Telescope
"La idea de la fusión ya rondaba por mi cabeza en 2017, cuando estudié las observaciones de nebulosas obtenidas con el telescopio espacial Herschel de la Agencia Espacial Europea", añade el coautor Laurent Mahy, actualmente investigador principal del Real Observatorio de Bélgica. "Encontrar una discrepancia de edad entre las estrellas sugiere que este escenario es el más plausible y hemos podido demostrarlo gracias a los nuevos datos de ESO".

Este escenario también explica por qué una de las estrellas del sistema es magnética y la otra no, otra característica peculiar de HD 148937 detectada en los datos del VLTI.

Al mismo tiempo, ayuda a resolver un antiguo misterio astronómico: cómo obtienen sus campos magnéticos las estrellas masivas. Los campos magnéticos son una característica común de las estrellas de baja masa como nuestro Sol, pero las estrellas más masivas no pueden sostener campos magnéticos de la misma manera. Pese a ello, algunas estrellas masivas, son magnéticas.

La comunidad astronómica sospechó durante algún tiempo que las estrellas masivas podrían adquirir campos magnéticos tras la fusión de dos estrellas. Pero esta es la primera vez que se encuentra una evidencia tan directa de que esto sucede. En el caso de HD 148937, la fusión debe haber ocurrido recientemente. "No se espera que el magnetismo en las estrellas masivas dure mucho tiempo en comparación con la vida de la estrella, por lo que parece que hemos observado este raro evento muy poco después de que sucediera", agrega Frost.

El Extremely Large Telescope (ELT) de ESO, actualmente en construcción en el desierto chileno de Atacama, permitirá a la comunidad científica averiguar con más detalle lo que sucedió en el sistema, y tal vez revelar aún más sorpresas.

China desafía a la NASA con tecnología nuclear para viajes rápidos a Marte y la Luna

 Una nueva tecnología de fisión nuclear desarrollada por investigadores chinos podría impulsar "futuras misiones espaciales de alta potencia y larga duración y misiones de exploración del espacio profundo", así como "proporcionar una gran capacidad de transporte masivo de ida y vuelta" a la Luna y a Marte y "apoyar la construcción de grandes infraestructuras espaciales, como varias estaciones espaciales", según un estudio recientemente publicado en la revista Scientia Sinica Technologica.

El prototipo del nuevo reactor espacial, con una potencia de 1,55 megavatios (MW), es refrigerado por litio, tiene una vida útil de unos 10 años y, de acuerdo con sus creadores, ya ha pasado varias pruebas iniciales en tierra. Las soluciones tecnológicas de los científicos e ingenieros chinos, especialmente el uso de litio líquido, permitieron reducir significativamente el tamaño del reactor, a pesar de que es siete veces más potente que un sistema rival construido por la NASA.

Una nave espacial de propulsión nuclear podría llegar hasta Marte y regresar a la Tierra en solo tres meses, apuntan expertos citados por The South China Morning Post. En contraste, un viaje solo de ida a Marte con una nave de combustibles fósiles duraría al menos siete meses. Este es el caso del vehículo aeroespacial superpesado Starship, diseñado y operado por la compañía estadounidense SpaceX.

El diseño chino también permite al reactor operar en las duras condiciones del espacio abierto durante períodos prolongados. No obstante, uno de los mayores desafíos para los desarrolladores ahora es garantizar un lanzamiento seguro al espacio y evitar una posible explosión nuclear en caso de una caída a la Tierra.

Anteriormente, se informó que Rusia y China están estudiando un proyecto de construcción de una planta de energía nuclear en la superficie lunar.

El más brillante y de más rápido crecimiento jamás observado.

Un equipo de astrónomos identifica un cuásar que bate récords
Esta reproducción artística muestra el cuásar J059-4351, el núcleo brillante de una galaxia distante alimentado por un agujero negro supermasivo. Utilizando el Very Large Telescope (VLT) de ESO, en Chile, se ha descubierto que este cuásar es el objeto más luminoso conocido en el universo hasta la fecha. El agujero negro supermasivo, que en la imagen se ve atrayendo la materia circundante, tiene una masa 17 000 millones de veces la del Sol y está creciendo en masa el equivalente a un Sol por día, lo que lo convierte en el agujero negro de más rápido crecimiento jamás conocido.
Crédito: ESO/M. Kornmesser

Los agujeros negros que alimentan a los cuásares recogen materia de su entorno en un proceso tan energético que emite grandes cantidades de luz. Tanto es así que los cuásares son algunos de los objetos más brillantes de nuestro cielo, lo que significa que incluso los más distantes son visibles desde la Tierra.
 Como regla general, los cuásares más luminosos indican la presencia de los agujeros negros supermasivos de más rápido crecimiento.

"Hemos descubierto el agujero negro de más rápido crecimiento conocido hasta la fecha. Tiene una masa de 17 000 millones de soles y come poco más de un Sol por día. Esto lo convierte en el objeto más luminoso del universo conocido", afirma Christian Wolf, astrónomo de la Universidad Nacional de Australia (ANU) y autor principal del estudio publicado hoy en la revista Nature Astronomy.
 El cuásar, llamado J0529-4351, está tan lejos de la Tierra que su luz tardó más de 12.000 millones de años en llegar hasta nosotros.

La materia atraída hacia este agujero negro, en forma de disco, emite tanta energía que J0529-4351 es más de 500 billones de veces más luminoso que el Sol [1]. "Toda esta luz proviene de un disco de acreción caliente que mide siete años luz de diámetro. Debe ser el disco de acreción más grande del universo", declara Samuel Lai, estudiante de doctorado de ANU y coautor del estudio. Siete años luz es aproximadamente 15.000 veces la distancia del Sol a la órbita de Neptuno.

Y, sorprendentemente, este cuásar que ha batido récords se escondía a plena vista. "Es una sorpresa que no haya sido detectado hasta hoy, cuando ya conocemos alrededor de un millón de cuásares menos impresionantes. Literalmente nos ha estado mirando a la cara hasta ahora", afirma el coautor, Christopher Onken, astrónomo de la ANU, quien también confirma que este objeto apareció en imágenes del Schmidt Southern Sky Survey de ESO que datan de 1980, pero no fue reconocido como un cuásar hasta décadas después.

La búsqueda de cuásares requiere datos observacionales precisos de grandes áreas del cielo. Los conjuntos de datos resultantes son tan grandes que los investigadores a menudo utilizan modelos de aprendizaje automático (machine-learning) para analizarlos y diferenciar los cuásares de otros objetos celestes. Sin embargo, estos modelos se entrenan con datos existentes, lo que limita los potenciales candidatos a objetos similares a los ya conocidos. Si un nuevo cuásar es más luminoso que cualquier otro observado anteriormente, el programa podría rechazarlo y clasificarlo como una estrella no muy distante de la Tierra.

Esta imagen muestra la región del cielo en la que se encuentra el cuásar J0529-4351, que ha batido un récord. Utilizando el Very Large Telescope (VLT) de ESO, en Chile, se ha descubierto que este cuásar es el objeto más luminoso conocido en el universo hasta la fecha. Esta imagen fue creada a partir de imágenes que forman parte del sondeo Digitized Sky Survey 2, mientras que el recuadro muestra la ubicación del cuásar en una imagen que forma parte del sondeo Dark Energy Survey.

Crédito: ESO/Digitized Sky Survey 2/Dark Energy Survey

Un análisis automatizado de los datos del satélite Gaia, de la Agencia Espacial Europea, dejó pasar a J0529-4351 por ser demasiado brillante para ser un cuásar, sugiriendo que se trataba de una estrella. Los investigadores lo identificaron como un cuásar distante el año pasado utilizando observaciones del telescopio ANU de 2,3 metros, ubicado en el Observatorio Siding Spring, en Australia. Sin embargo, descubrir que era el cuásar más luminoso jamás observado requirió un telescopio más grande y mediciones de un instrumento más preciso.
 El espectrógrafo X-shooter, instalado en el VLT de ESO, en el desierto chileno de Atacama, proporcionó los datos que resultarían cruciales.

El agujero negro de más rápido crecimiento jamás observado también será un objetivo perfecto para la actualización del instrumento GRAVITY+, instalado en el Interferómetro VLT (VLTI) de ESO, que está diseñado para medir con precisión la masa de los agujeros negros, incluidos los que están lejos de la Tierra. Además, el Extremely Large Telescope (ELT) de ESO, un telescopio de 39 metros que se está construyendo en el desierto chileno de Atacama, hará aún más factible la identificación y caracterización de estos elusivos objetos.

Detectar y estudiar distantes agujeros negros supermasivos podría arrojar luz sobre algunos de los misterios del universo primitivo, incluida la forma en que se formaron y evolucionaron tanto ellos como sus galaxias anfitrionas. Pero esa no es la única razón por la que Wolf los busca. "Personalmente, simplemente me gusta la búsqueda", afirma. "Durante unos minutos al día, vuelvo a sentirme como un niño, jugando a encontrar el tesoro, y ahora devuelvo a la sociedad todo lo que he aprendido desde que empecé".

Notas

[1] Hace unos años, la NASA y la Agencia Espacial Europea anunciaron que el Telescopio Espacial Hubble había descubierto un cuásar, J043947.08 + 163415.7, tan brillante como 600 billones de soles. Sin embargo, el brillo de ese cuásar fue magnificado por una galaxia "lente", ubicada entre nosotros y el cuásar distante. Se estima que la luminosidad real de J043947,08+163415,7 equivale a unos 11 billones de soles (1 billón es un millón de millones: 1 000 000 000 000 o 1012).
Información adicional
Este trabajo de investigación se ha presentado en el artículo científico titulado “The accretion of a solar mass per day by a 17-billion solar mass black hole” y se ha publicado en la revista Nature Astronomy (doi:10.1038/s41550-024-02195-x).

El Hubble de la NASA rastrea cúmulos de estrellas 'Collar de Perlas' en colisiones de galaxias.

Hubble.- Al contrario de lo que podría pensarse, las colisiones de galaxias no destruyen las estrellas. De hecho, la dinámica agitada desencadena nuevas generaciones de estrellas y, presumiblemente, de planetas que las acompañan.
Ahora el Telescopio Espacial Hubble de la NASA se ha centrado en 12 galaxias en interacción que tienen largas colas de gas, polvo y una gran cantidad de estrellas, parecidas a renacuajos. La exquisita nitidez y sensibilidad del Hubble a la luz ultravioleta han descubierto 425 cúmulos de estrellas recién nacidas a lo largo de estas colas, que parecen cadenas de luces navideñas. Cada cúmulo contiene hasta 1 millón de estrellas azules recién nacidas.

Los cúmulos en las colas de las mareas se conocen desde hace décadas. Cuando las galaxias interactúan, las fuerzas de marea gravitacionales arrastran largas corrientes de gas y polvo. Dos ejemplos populares son las galaxias Antenas y Ratones con sus proyecciones largas y estrechas en forma de dedos.

Un equipo de astrónomos utilizó una combinación de nuevas observaciones y datos de archivo para obtener edades y masas de cúmulos de estrellas con cola de marea. Descubrieron que estos grupos son muy jóvenes: sólo tienen 10 millones de años. Y parecen estar formándose al mismo ritmo a lo largo de colas que se extienden a lo largo de miles de años luz.

"Es una sorpresa ver muchos objetos jóvenes en las colas. Nos dice mucho sobre la eficiencia de la formación de cúmulos", dijo el autor principal Michael Rodruck del Randolph-Macon College en Ashland, Virginia. "Con las colas de marea, se construirán nuevas generaciones de estrellas que de otro modo no habrían existido".

Las colas parecen como si estuvieran tomando el brazo espiral de una galaxia y estirándolo hacia el espacio. La parte exterior del brazo es arrastrada como un caramelo por el tira y afloja gravitacional entre un par de galaxias que interactúan.

Antes de las fusiones, las galaxias eran ricas en nubes de polvo de hidrógeno molecular que simplemente pueden haber permanecido inertes. Pero las nubes se empujaban y chocaban entre sí durante los encuentros. Esto comprimió el hidrógeno hasta el punto en que precipitó una tormenta de nacimiento de estrellas.

El destino de estos cúmulos estelares extendidos es incierto. Es posible que permanezcan gravitacionalmente intactos y evolucionen hasta convertirse en cúmulos de estrellas globulares, como los que orbitan fuera del plano de nuestra galaxia, la Vía Láctea. O pueden dispersarse para formar un halo de estrellas alrededor de su galaxia anfitriona, o ser expulsadas y convertirse en estrellas intergalácticas errantes.

Esta formación de estrellas en forma de collar de perlas puede haber sido más común en el universo primitivo, cuando las galaxias chocaban entre sí con mayor frecuencia. Estas galaxias cercanas observadas por el Hubble son una representación de lo que sucedió hace mucho tiempo y, por lo tanto, son laboratorios para mirar hacia el pasado distante.

Los telescopios muestran que el agujero negro de la Vía Láctea está listo para dar una patada.

Esta ilustración artística muestra los hallazgos de un nuevo estudio sobre el agujero negro supermasivo en el centro de nuestra galaxia llamado Sagitario A* (abreviado como Sgr A*). Como informamos en nuestro último comunicado de prensa , este resultado encontró que Sgr A* está girando tan rápido que está deformando el espacio-tiempo (es decir, el tiempo y las tres dimensiones del espacio) de modo que puede parecerse más a una pelota de fútbol.

NASA/CXC/M.Weiss

Estos resultados se obtuvieron con el Observatorio de rayos X Chandra de la NASA y el Very Large Array (VLA) Karl G. Jansky de la NSF. Un equipo de investigadores aplicó un nuevo método que utiliza datos de radio y rayos X para determinar qué tan rápido gira Sgr A* en función de cómo fluye el material hacia y desde el agujero negro . Descubrieron que Sgr A* gira con una velocidad angular de aproximadamente el 60% del valor máximo posible y con un momento angular de aproximadamente el 90% del valor máximo posible.

Los agujeros negros tienen dos propiedades fundamentales: su masa (cuánto pesan) y su giro (qué tan rápido giran). La determinación de cualquiera de estos dos valores les dice a los científicos mucho sobre cualquier agujero negro y cómo se comporta. En el pasado, los astrónomos hicieron otras estimaciones de la velocidad de rotación de Sgr A* utilizando diferentes técnicas, con resultados que iban desde que Sgr A* no giraba en absoluto hasta que giraba casi a su velocidad máxima.

El nuevo estudio sugiere que Sgr A*, de hecho, está girando muy rápidamente, lo que hace que el espacio-tiempo a su alrededor se aplaste. La ilustración muestra una sección transversal de Sgr A* y el material arremolinándose a su alrededor en un disco. La esfera negra en el centro representa el llamado horizonte de sucesos del agujero negro, el punto de no retorno del que nada, ni siquiera la luz, puede escapar.

Mirando el agujero negro que gira desde un lado, como se muestra en esta ilustración, el espacio-tiempo que lo rodea tiene la forma de una pelota de fútbol. Cuanto más rápido sea el giro, más plano será el balón.

El material amarillo anaranjado a ambos lados representa gas arremolinándose alrededor de Sgr A*. Este material inevitablemente se precipita hacia el agujero negro y cruza el horizonte de sucesos una vez que cae dentro de la forma de una pelota de fútbol. Por lo tanto, el área dentro de la forma del balón de fútbol pero fuera del horizonte de sucesos se representa como una cavidad. Las manchas azules muestran chorros que se disparan desde los polos del agujero negro en rotación. Mirando el agujero negro desde arriba, a lo largo del cañón del chorro, el espacio-tiempo tiene una forma circular.

El giro de un agujero negro puede actuar como una importante fuente de energía. Los agujeros negros supermasivos en rotación producen flujos colimados, como chorros, cuando se extrae su energía de rotación, lo que requiere que haya al menos algo de materia en las proximidades del agujero negro. Debido a la escasez de combustible alrededor de Sgr A*, este agujero negro ha estado relativamente tranquilo en los últimos milenios con chorros relativamente débiles. Este trabajo, sin embargo, muestra que esto podría cambiar si aumenta la cantidad de material en las proximidades de Sgr A*.

Imagen de rayos X de Chandra de Sagitario A* y la región circundante.
NASA/CXC/Univ. de Wisconsin/Y.Bai, et al.

Para determinar el giro de Sgr A*, los autores utilizaron una técnica empírica denominada "método de flujo de salida" que detalla la relación entre el giro del agujero negro y su masa, las propiedades de la materia cerca del agujero negro y las propiedades de salida. El flujo colimado produce ondas de radio, mientras que el disco de gas que rodea el agujero negro es responsable de la emisión de rayos X. Utilizando este método, los investigadores combinaron datos de Chandra y el VLA con una estimación independiente de la masa del agujero negro de otros telescopios para limitar el giro del agujero negro.
El artículo que describe estos resultados dirigido por Ruth Daly (Penn State University) se publica en la edición de enero de 2024 de Monthly Notices of the Royal Astronomical Society y aparece en línea en https://ui.adsabs.harvard.edu/abs/2024MNRAS. 527..428D/abstracto . Los otros autores son Biny Sebastian (Universidad de Manitoba, Canadá), Megan Donahue (Universidad Estatal de Michigan), Christopher O'Dea (Universidad de Manitoba), Daryl Haggard (Universidad McGill) y Anan Lu (Universidad McGill).

Agujeros Negros. ¡Les seguimos la pista!

Cuando las estrellas masivas llegan al final de sus vidas, colapsan bajo su propia gravedad de una forma tan rápida que se produce una violenta explosión conocida como supernova. La comunidad astronómica cree que, tras la impactante explosión, lo que queda es el núcleo ultradenso o remanente compacto de la estrella. Dependiendo de lo masiva que sea la estrella, el remanente compacto será una estrella de neutrones (un objeto tan denso que una cucharadita de su material pesaría alrededor de un billón de kilogramos aquí en la Tierra) o un agujero negro (un objeto del que nada, ni siquiera la luz, puede escapar).

La comunidad astronómica había detectado muchas pistas de eventos pasados que arrojaban luz sobre esta cadena de acontecimientos, como el hallazgo de una estrella de neutrones dentro de la Nebulosa del Cangrejo, la nube de gas que quedó tras la explosión de una estrella hace casi mil años. Pero nunca antes habían visto este proceso en tiempo real, por lo que no se había podido obtener evidencia directa de que una supernova dejara un remanente compacto. "En nuestro trabajo, establecemos un vínculo directo", afirma Ping Chen, investigador del Instituto Weizmann de Ciencias (Israel) y autor principal de un estudio publicado hoy en la revista Nature y presentado en la 243ª reunión de la Sociedad Americana de Astronomía en Nueva Orleans (EE.UU.).


El golpe de suerte para los investigadores llegó en mayo de 2022, cuando el astrónomo aficionado sudafricano, Berto Monard, descubrió la supernova SN 2022jli en el brazo espiral de la cercana galaxia NGC 157, situada a 75 millones de años luz de distancia. Dos equipos distintos centraron su atención en las secuelas de esta explosión y descubrieron que tenía un comportamiento único.

Tras la explosión, el brillo de la mayoría de las supernovas simplemente se desvanece con el tiempo; la comunidad astronómica ve una disminución suave y gradual en la "curva de luz" de la explosión. Pero el comportamiento de SN 2022jli es muy peculiar: a medida que el brillo general disminuye, no lo hace suavemente, sino que oscila hacia arriba y hacia abajo cada 12 días más o menos. "En los datos de SN 2022jli vemos una secuencia repetitiva de brillo y desvanecimiento", declara Thomas Moore, estudiante de doctorado en la Universidad de Queen's de Belfast (Irlanda del Norte), quien dirigió un estudio de la supernova publicado a finales del año pasado en el Astrophysical Journal. "Esta es la primera vez que se han detectado oscilaciones periódicas repetidas, a lo largo de muchos ciclos, en una curva de luz de supernova", señaló Moore en su artículo.

Tanto el equipo de Moore como el de Chen creen que la presencia de más de una estrella en el sistema SN 2022jli podría explicar este comportamiento. De hecho, no es inusual que las estrellas masivas orbiten junto a una estrella compañera en lo que se conoce como un sistema binario, y la estrella que causó la SN 2022jli no ha sido una excepción. Lo destacable de este sistema, sin embargo, es que la estrella compañera parece haber sobrevivido a la muerte violenta de su pareja y los dos objetos, el remanente compacto y la compañera, probablemente siguieron orbitando entre sí.

Los datos recopilados por el equipo de Moore, que incluyeron observaciones con el telescopio NTT de ESO, ubicado en el desierto de Atacama (Chile), no les permitieron precisar exactamente cómo la interacción entre los dos objetos causó los altibajos en la curva de luz. Pero el equipo de Chen tenía observaciones adicionales. Encontraron las mismas fluctuaciones regulares en el brillo visible del sistema que el equipo de Moore había detectado, y también detectaron movimientos periódicos de gas hidrógeno y ráfagas de rayos gamma en el sistema. Sus observaciones fueron posibles gracias a una flota de instrumentos en tierra y en el espacio, incluido el instrumento X-shooter, instalado en el VLT de ESO, también ubicado en Chile.

Uniendo todas las pistas, en general los dos equipos están de acuerdo en que cuando la estrella compañera interactuó con el material emitido durante la explosión de la supernova, su atmósfera rica en hidrógeno se hinchó más de lo habitual. Luego, a medida que el objeto compacto que quedó después de la explosión cruzó la atmósfera de la compañera al orbitarse mutuamente, este a su vez robaría gas hidrógeno de la estrella, formando un disco caliente de materia a su alrededor. Este robo periódico de materia, o acreción, produjo una gran cantidad de energía que fue captada en las observaciones como cambios regulares de brillo.

A pesar de que los equipos no pudieron observar la luz proveniente del objeto compacto en sí, concluyeron que este robo de energía solo puede deberse a una estrella de neutrones invisible, o posiblemente a un agujero negro, que absorbe materia de la atmósfera hinchada de la estrella compañera. "Nuestra investigación es como resolver un rompecabezas reuniendo todas las piezas posibles", declara Chen. "Todas estas piezas alineadas conducen a la verdad".

Con la presencia confirmada de un agujero negro o una estrella de neutrones, todavía hay mucho que desentrañar sobre este enigmático sistema, incluida la naturaleza exacta del objeto compacto o qué final podría esperar a este sistema binario. Los telescopios de próxima generación, como el Extremely Large Telescope de ESO, programado para comenzar a operar a finales de esta década, ayudarán a desentrañar estos misterios, permitiendo a la comunidad astronómica revelar detalles sin precedentes de este sistema único.

Hubble espía galaxias vecinas.

Esta nueva imagen del Telescopio Espacial Hubble de la NASA muestra un par de galaxias resplandecientes conocidas como Arp 140.
NASA/ESA/R. Foley (Universidad de California - Santa Cruz)/Procesamiento: Gladys Kober (NASA/Universidad Católica de América)

Una galaxia espiral barrada y una galaxia lenticular se unen para crear este par interactivo conocido como Arp 140. La galaxia lenticular, NGC 274, es visible en el lado derecho de esta nueva imagen del Telescopio Espacial Hubble de la NASA , y la espiral barrada, NGC 275, está a la izquierda. La pareja se encuentra en la constelación de Cetus.

 Cetus es una constelación del hemisferio celestial sur.
Se encuentra entre las constelaciones de Piscis y Eridanus.
Su nombre en latín significa "monstruo marino"-.
Las galaxias lenticulares y las galaxias espirales barradas tienen estructuras diferentes.

 En las galaxias espirales barradas, una barra de estrellas atraviesa el bulbo central de la galaxia (visto aquí como una neblina vertical de color blanco brillante en NGC 275). Normalmente, los brazos de la galaxia comienzan al final de la barra.

Las galaxias lenticulares, por otro lado, se clasifican entre galaxias elípticas y espirales. Reciben su nombre por la apariencia de borde que se asemeja a un disco. Las galaxias lenticulares tienen grandes protuberancias centrales y espirales aplanadas en forma de discos, pero no tienen brazos espirales. No tienen mucho gas ni polvo y están formados principalmente por estrellas viejas.

Extrañas ráfagas de radio en un lugar extraño

Los astrónomos que utilizan el Telescopio Espacial Hubble de la NASA han encontrado un evento raro en un lugar extraño.


science-nasa.- Se llama ráfaga de radio rápida (FRB), una explosión fugaz de energía que puede, durante unos milisegundos, eclipsar a una galaxia entera. En los últimos años se han detectado cientos de FRB. Aparecen por todo el cielo como flashes de cámaras en un evento en un estadio, pero las fuentes detrás de estos intensos estallidos de radiación siguen siendo inciertas.

Este nuevo FRB es particularmente extraño porque entró en erupción en la mitad del universo, lo que lo convierte en el ejemplo más lejano y poderoso detectado hasta la fecha.

Y si eso no es lo suficientemente extraño, simplemente se volvió más extraño según las observaciones de seguimiento realizadas por el Hubble después de su descubrimiento. La FRB brilló en lo que parece un lugar improbable: un conjunto de galaxias que existían cuando el universo tenía sólo 5 mil millones de años. La gran mayoría de las FRB anteriores se han encontrado en galaxias aisladas.

FRB 20220610A fue detectado por primera vez el 10 de junio de 2022 por el radiotelescopio Australian Square Kilometer Array Pathfinder (ASKAP) en Australia Occidental. El Very Large Telescope del Observatorio Europeo Austral en Chile confirmó que el FRB provenía de un lugar distante. El FRB era cuatro veces más energético que los FRB más cercanos.

"Se requirió la gran agudeza y sensibilidad del Hubble para identificar exactamente de dónde venía la FRB", dijo la autora principal Alexa Gordon de la Universidad Northwestern en Evanston, Illinois. "Sin las imágenes del Hubble, seguiría siendo un misterio si esto se originó en una galaxia monolítica o en algún tipo de sistema interactivo. Son estos tipos de entornos, estos extraños, los que nos están llevando a comprender mejor el misterio de los FRB. ".

Las nítidas imágenes del Hubble sugieren que esta FRB se originó en un entorno donde puede haber hasta siete galaxias en un posible camino hacia la fusión, lo que también sería muy significativo, dicen los investigadores.

"En última instancia, estamos tratando de responder a las preguntas: ¿Qué los causa? ¿Cuáles son sus progenitores y cuáles son sus orígenes? Las observaciones del Hubble proporcionan una visión espectacular de los sorprendentes tipos de ambientes que dan lugar a estos misteriosos eventos", dijo el co-investigador. Wen-fai Fong, también de la Universidad Northwestern.

Aunque los astrónomos no tienen un consenso sobre el posible mecanismo detrás de este extraordinario fenómeno, en general se piensa que los FRB deben involucrar algún tipo de objeto compacto, como un agujero negro o una estrella de neutrones. Un tipo extremo de estrella de neutrones se llama magnetar, el tipo de estrella de neutrones más intensamente magnético del universo. Tiene un campo magnético tan fuerte que, si se ubicara un magnetar a medio camino entre la Tierra y la Luna, borraría la banda magnética de las tarjetas de crédito de todas las personas en el mundo. Mucho peor aún, si un astronauta viajara a unos pocos cientos de millas del magnetar, efectivamente se disolvería, porque cada átomo de su cuerpo se alteraría.

Los posibles mecanismos implican algún tipo de terremoto estelar discordante o, alternativamente, una explosión causada cuando las líneas retorcidas del campo magnético de un magnetar se rompen y se vuelven a conectar. Un fenómeno similar ocurre en el Sol, provocando erupciones solares, pero el campo de un magnetar es un billón de veces más fuerte que la magnetosfera del Sol. El chasquido generaría un destello de FRB, o podría generar una onda de choque que incinere el polvo circundante y caliente el gas hasta convertirlo en plasma.

Podría haber varios tipos de magnetares. En un caso, podría ser un objeto en explosión que orbita alrededor de un agujero negro rodeado por un disco de material. Otra alternativa es un par de estrellas de neutrones en órbita cuyas magnetosferas interactúen periódicamente, creando una cavidad donde puedan tener lugar las erupciones. Se estima que los magnetares están activos durante unos 10.000 años antes de asentarse, por lo que se esperaría que se encontraran donde se está produciendo una tormenta de nacimiento de estrellas. Pero este no parece ser el caso de todos los magnetares.

En un futuro próximo, los experimentos con FRB aumentarán su sensibilidad, lo que conducirá a una tasa sin precedentes en el número de FRB detectados a estas distancias. Hubble desempeñará un papel crucial en la caracterización de los entornos en los que se producen estos FRB. Los astrónomos pronto descubrirán cuán especial era el entorno de este FRB.

"Sólo tenemos que seguir encontrando más de estos FRB, tanto cercanos como lejanos, y en todos estos diferentes tipos de entornos", dijo Gordon.

Los resultados se presentarán en la 243ª reunión de la Sociedad Astronómica Estadounidense en Nueva Orleans, Luisiana.

Telescopio Webb: una protoestrella prominente en Perseo

Esta imagen fue capturada con la cámara de infrarrojo cercano (NIRCam) de Webb.
 Las imágenes infrarrojas son poderosas para estudiar las estrellas recién nacidas y sus flujos, porque las estrellas más jóvenes invariablemente todavía están incrustadas dentro del gas y el polvo a partir del cual se formaron.
 La emisión infrarroja de los flujos de la estrella penetra el gas y el polvo que los oscurecen, lo que hace que los objetos Herbig-Haro sean ideales para la observación con los sensibles instrumentos infrarrojos de Webb.
 Las moléculas excitadas por las condiciones turbulentas, incluido el hidrógeno molecular y el monóxido de carbono, emiten luz infrarroja que Webb puede recolectar para visualizar la estructura de los flujos de salida.
 NIRCam es particularmente buena para observar las moléculas calientes (miles de grados Celsius) que se excitan como resultado de choques.

Imagen: Protoestrella en Perseo

El telescopio espacial James Webb de NASA/ESA/CSA revela detalles intrincados del objeto Herbig Haro 797 (HH 797). Los objetos Herbig-Haro son regiones luminosas que rodean estrellas recién nacidas (conocidas como protoestrellas) y se forman cuando los vientos estelares o los chorros de gas que arrojan estas estrellas recién nacidas forman ondas de choque que chocan con gas y polvo cercanos a altas velocidades. HH 797, que domina la mitad inferior de esta imagen, se encuentra cerca del joven cúmulo estelar abierto IC 348, que se encuentra cerca del borde oriental del complejo de nubes oscuras de Perseo. Se cree que los brillantes objetos infrarrojos de la parte superior de la imagen albergan dos protoestrellas más. Esta imagen fue capturada con la cámara de infrarrojo cercano (NIRCam) de Webb.
ESA/Webb, NASA y CSA, T. Ray (Instituto de Estudios Avanzados de Dublín)

Utilizando observaciones terrestres, los investigadores han descubierto previamente que para el gas molecular frío asociado con HH 797, la mayor parte del gas desplazado hacia el rojo (alejándose de nosotros) se encuentra hacia el sur (abajo a la derecha), mientras que el gas desplazado hacia el azul ( avanzando hacia nosotros) está al norte (abajo a la izquierda).
 También se encontró un gradiente a lo largo del flujo de salida, de modo que a una distancia determinada de la joven estrella central, la velocidad del gas cerca del borde oriental del chorro está más desplazada al rojo que la del gas en el borde occidental.
 En el pasado, los astrónomos pensaban que esto se debía a la rotación del flujo de salida. Sin embargo, en esta imagen de Webb de mayor resolución podemos ver que lo que se pensaba que era un flujo de salida en realidad está formado por dos flujos de salida casi paralelos con sus propias series separadas de shocks (lo que explica las asimetrías de velocidad).
 La fuente, situada en la pequeña región oscura (abajo a la derecha en el centro), y ya conocida por observaciones anteriores, no es una estrella simple, sino doble.
 Cada estrella está produciendo su propio flujo dramático.
 En esta imagen también se ven otros flujos de salida, incluido uno de la protoestrella en la parte superior derecha del centro junto con sus paredes de cavidad iluminadas.

HH 797 se encuentra directamente al norte de HH 211 (separados por aproximadamente 30 segundos de arco), que fue la característica de una imagen publicada por Webb en septiembre de 2023.

Hubble ve un monstruo galáctico





El Telescopio Espacial Hubble de la NASA/ESA ha capturado un monstruo en ciernes en esta observación del excepcional cúmulo de galaxias eMACS J1353.7+4329, que se encuentra a unos ocho mil millones de años luz de la Tierra en la constelación Canes Venatici. Esta colección de al menos dos cúmulos de galaxias está en proceso de fusionarse para crear un monstruo cósmico, un solo cúmulo gigantesco que actúa como una lente gravitacional.

La lente gravitacional es un ejemplo dramático de la teoría general de la relatividad de Einstein en acción. Un cuerpo celeste, como un cúmulo de galaxias, es lo suficientemente masivo como para distorsionar el espacio-tiempo, lo que hace que el camino de la luz alrededor del objeto se doble visiblemente como si fuera una gran lente.

 Las lentes gravitacionales también pueden magnificar objetos distantes, lo que permite a los astrónomos observar objetos que de otro modo serían demasiado débiles y demasiado lejanos para ser detectados. También puede distorsionar las imágenes de las galaxias de fondo, convirtiéndolas en rayos de luz. Los primeros indicios de lentes gravitacionales ya son visibles en esta imagen como arcos brillantes que se mezclan con la multitud de galaxias en eMACS J1353.7+4329.

Los datos de esta imagen provienen de un proyecto de observación llamado Monsters in the Making, que utilizó dos de los instrumentos del Hubble para observar cinco cúmulos de galaxias excepcionales en múltiples longitudes de onda.

Estas observaciones de múltiples longitudes de onda fueron posibles gracias a la Cámara de campo ancho 3 y la Cámara avanzada para encuestas del Hubble.

 Los astrónomos detrás de estas observaciones esperan sentar las bases para futuros estudios de grandes lentes gravitacionales con telescopios de próxima generación como el Telescopio Espacial James Webb de la NASA/ESA/CSA.

Crédito del texto: Agencia Espacial Europea (ESA)
Crédito de la imagen: ESA/Hubble y NASA, H. Ebeling

Buscar en Mundo RED METROnet.

Agencia Digital...

Agencia Digital...

Importante.

Venezuela conquista la corona

PASAJE (Ecuador) - Noche histórica para Venezuela en Pasaje, Ecuador. Su selección nacional rompió las cadenas que la ataban a una sequía d...