Buscar en Mundo RED METROnet.

El "núcleo" cambia, de velocidad y en dirección.

¿El núcleo interno de la Tierra ha comenzado a cambiar la dirección de su rotación?

Al analizar los datos de las ondas sísmicas en las últimas seis décadas, científicos chinos de la Universidad de Pekín concluyeron que la rotación del núcleo "casi se detuvo hacia 2009 y luego giró en dirección opuesta".

Aunque los científicos califican de "sorprendentes" sus hallazgos, todavía se necesitan más investigaciones para confirmarlos.

Sismólogos de la Universidad de Pekín han dado a conocer que el análisis de los datos de los terremotos sugiere que el núcleo interno de la Tierra dejó de girar más rápido que el manto del planeta en el año 2009. Hasta ese momento, la comunidad científica consideraba que el núcleo interno giraba más rápido que el resto del planeta, pero según un nuevo estudio, en algún momento de la última década, aparentemente dejó de hacerlo y posiblemente vaya a cambiar su dirección de rotación.
Artículo: La oscilación multidecenal del núcleo interno de la Tierra, que coincide con la duración del día y las variaciones del campo magnético, está experimentando una pausa y puede estar invirtiéndose

 Article: Multidecadal oscillation of the Earth’s inner core, coinciding with length of day and magnetic field variations, is experiencing a pause and may be reversing@PKU1898https://t.co/q0kuks1L52 pic.twitter.com/1JYliX5ygX

Yi Yang y Xiaodong Song Yang, quienes publicaron los hallazgos este martes en Nature Geoscience, sostienen que el núcleo interno ha detenido su giro en relación con el manto. Estudiaron terremotos entre 1995 y 2021, y encontraron que la rotación del núcleo interno con respecto al manto se había detenido alrededor del 2009. Consideran que es un verdadero fenómeno planetario relacionado con la rotación del núcleo, y no solo un cambio local en la superficie del núcleo interno. "Nos sorprendió bastante", dijeron.

También compararon este patrón reciente con los registros sísmicos de Alaska de los dobletes de las Islas Sándwich del Sur, que se remontan a 1964, y parece estar asociado con un retroceso gradual del núcleo interno como parte de una oscilación de aproximadamente siete décadas, con otro punto de inflexión a principios de la década de 1970. Todo sugiere que este cambio cíclico en la dirección de la rotación se lleva a cabo en períodos de décadas.

"Un ciclo completo (en una dirección y en la otra) de este movimiento dura alrededor de siete décadas", según los investigadores. El último cambio de rotación había ocurrido a principios de los años 1970. Y el próximo tendrá lugar a mediados de los años 2040, completando el ciclo, según los científicos chinos.Este movimiento se ajustaría más o menos a los cambios en la duración del día, ínfimas variaciones en el tiempo exacto que la Tierra necesita para efectuar una rotación sobre su eje, añaden.

¿Más rápido o más lento?

La Tierra está formada por varias capas: la corteza, el manto, el núcleo externo y el núcleo interno.

El núcleo del planeta fue descubierto en la primera mitad del siglo pasado, el cual consiste en un centro sólido, formado por hierro y níquel, dentro de una capa compuesta fundamentalmente de hierro fundido y otros elementos. El núcleo externo líquido permite que el núcleo interno gire a su propio ritmo con relación al resto del planeta.

Desde la década de 1960, el tiempo de viaje de las ondas sísmicas que emanan de los terremotos cambió durante las tres décadas siguientes, lo que indicó a los investigadores que el núcleo interno gira más rápido que el manto del planeta.

Sin embargo, en contraposición a esta idea, otros investigadores que analizaron los datos de ondas sísmicas generadas por explosiones de pruebas nucleares estadounidenses en 1969 y 1971, informaron que, entre esos años, el núcleo interno de la Tierra había rotado más lentamente que el manto. Solo después de 1971, dicen, se aceleró y comenzó a girar en exceso.

Una "larga historia de registro continuo de datos sísmicos es fundamental para monitorear el movimiento del corazón del planeta", sostienen Yang y Song.

Webb revela ‘el lado oscuro’ de la química del hielo preestelar

NASA.- Si deseamos construir un planeta habitable, los hielos son un­ ingrediente vital porque son la fuente principal de varios elementos clave, a saber: carbono, hidrógeno, oxígeno, nitrógeno y azufre (denominados aquí como CHONS). Estos elementos son ingredientes importantes tanto en las atmósferas planetarias como en moléculas como los azúcares, los alcoholes y los aminoácidos simples.

Un equipo internacional de astrónomos que utilizan el telescopio espacial James Webb de la NASA ha obtenido un inventario detallado de los hielos más profundos y fríos que se hayan medido hasta la fecha en una nube molecular. Además de hielos simples como el agua, el equipo pudo identificar formas congeladas de una amplia gama de moléculas, desde sulfuro del carbonilo, amoníaco y metano, hasta la molécula orgánica compleja más simple, el metanol. (Los investigadores consideraron que las moléculas orgánicas eran complejas cuando tenían seis o más átomos). Este es el censo más completo hasta la fecha de los ingredientes de los hielos disponibles para la creación de futuras generaciones de estrellas y planetas, antes de que se calienten durante la formación de las estrellas jóvenes.

“Nuestros resultados brindan información sobre la etapa química inicial y oscura de la formación de hielo en los granos de polvo interestelar que crecerán hasta convertirse en guijarros del tamaño de un centímetro, a partir de los cuales se forman los planetas en los discos”, dijo Melissa McClure, astrónoma del Observatorio de Leiden en los Países Bajos, quien es la investigadora principal de este programa de observación y autora principal del artículo científico que describe este resultado. “Estas observaciones abren una nueva ventana para conocer las vías de formación de las moléculas simples y complejas que se necesitan para fabricar los componentes básicos de la vida”.

Además de las moléculas identificadas, el equipo encontró evidencia de moléculas más complejas que el metanol y, aunque no atribuyeron definitivamente estas señales a moléculas específicas, esto demuestra por primera vez que las moléculas complejas se forman en las profundidades heladas de las nubes moleculares antes de que nazcan las estrellas.

“Nuestra identificación de moléculas orgánicas complejas, como el metanol y potencialmente el etanol, también sugiere que los muchos sistemas estelares y planetarios que se desarrollan en esta nube en particular heredarán moléculas en un estado químico bastante avanzado”, agregó Will Rocha, astrónomo del Observatorio de Leiden, quien contribuyó a este descubrimiento. “Esto podría significar que la presencia de precursores de moléculas prebióticas en los sistemas planetarios es un resultado común de la formación de estrellas, en lugar de una característica única de nuestro propio sistema solar”.

Los astrónomos han hecho un inventario de los hielos más profundamente incrustados hasta la fecha en una nube molecular fría. Utilizaron la luz de una estrella en el fondo, denominada NIR38, para iluminar la nube oscura llamada Camaleón I. Los hielos dentro de la nube absorbieron ciertas longitudes de onda de luz infrarroja, dejando señales espectrales llamadas líneas de absorción. Estas líneas indican qué sustancias están presentes dentro de la nube molecular. Estas gráficas muestran datos espectrales obtenidos por tres de los instrumentos del telescopio espacial James Webb. Además de hielos simples como el agua, el equipo científico pudo identificar formas congeladas de una amplia gama de moléculas, desde dióxido de carbono, amoníaco y metano, hasta la molécula orgánica compleja más simple, el metanol.
Ilustración: NASA, ESA, CSA y J. Olmsted (STScI); Investigación científica: K. Pontoppidan (STScI), N. Crouzet (Universidad de Leiden), Z. Smith (The Open University) y M. McClure (Observatorio de Leiden)

Al detectar el sulfuro de carbonilo del hielo que contiene azufre, los investigadores pudieron estimar por primera vez la cantidad de azufre incrustado en los granos de polvo de los hielos preestelares. Si bien la cantidad medida es mayor que la observada anteriormente, sigue siendo menor que la cantidad total que se espera que esté presente en esta nube, en función de su densidad. Esto también es cierto para los otros elementos de CHONS. Un desafío clave para los astrónomos es comprender dónde se esconden estos elementos: en hielos, en materiales similares al hollín o en rocas. La cantidad de CHONS en cada tipo de material determina cuánto de estos elementos acaban en la atmósfera de los exoplanetas y cuánto en su interior.

“El hecho de que no hayamos visto todos los CHONS que esperamos podría indicar que están atrapados en materiales más rocosos o ennegrecidos de hollín que no podemos medir”, explicó McClure. “Esto podría permitir una mayor diversidad en la composición general de los planetas terrestres”.

La caracterización química de los hielos se logró estudiando de qué manera la luz estelar más allá de la nube molecular era absorbida por las moléculas de los hielos dentro de la nube, en longitudes de onda infrarrojas específicas que son visibles para Webb. Este proceso deja señales químicas conocidas como líneas de absorción, las cuales pueden compararse con datos de laboratorio para identificar qué hielos (moléculas congeladas) están presentes en la nube molecular. En este estudio, el equipo se centró en los hielos enterrados en una región particularmente fría, densa y difícil de investigar de la nube molecular de Camaleón I, una región a unos 500 años luz de la Tierra que actualmente se encuentra en proceso de formación de decenas de estrellas jóvenes.

“Simplemente, no habríamos podido observar estos hielos sin Webb”, explicó Klaus Pontoppidan, científico del proyecto Webb en el Instituto de Ciencias del Telescopio Espacial (STScI, por sus siglas en inglés) en Baltimore, Maryland, quien participó en esta investigación. “Los hielos aparecen como depresiones contra un fondo continuo de luz estelar. En regiones tan frías y densas, gran parte de la luz estelar de fondo está bloqueada, y fue necesaria la exquisita sensibilidad de Webb para detectar la luz estelar y, por lo tanto, identificar los hielos dentro de la nube molecular”.

Esta investigación forma parte del proyecto Ice Age (Edad de Hielo), uno de los 13 programas de Primeras Observaciones Científicas (ERS, por sus siglas en inglés) de Webb. Estas observaciones están diseñadas para mostrar las capacidades de observación de Webb y para permitir que la comunidad astronómica aprenda a sacar el máximo provecho de sus instrumentos. El equipo de Ice Age ya tiene planificadas otras observaciones y espera rastrear el trayecto de los hielos desde su formación hasta su incorporación en cometas de hielo.

“Esta es solo la primera de una serie de instantáneas espectrales que obtendremos para ver cómo evolucionan los hielos desde su síntesis inicial hasta las regiones de formación de cometas en los discos protoplanetarios”, concluyó McClure. “Esto nos dirá qué mezcla de hielos —y, por lo tanto, qué elementos— pueden eventualmente ser transportados a la superficie de los exoplanetas terrestres o incorporados a la atmósfera de planetas gigantes de gas o hielo”.
Estos resultados fueron publicados en la edición del 23 de enero de Nature Astronomy.

Agencia Digital...

Agencia Digital...

Importante.

Demanda de minerales críticos se disparará.

PMA/Dina El Kassaby   Un trabajador instala un panel solar en Jordania. Dado que se espera que la demanda de minerales críticos para las tec...